
1. Introduction

Given a finite set of real numbers, Y = {y1, . . . , yn},
the problem of isotonic regression with respect to a
complete order is the following quadratic programming
problem:

(1)

where the wi are strictly positive weights. Many impor-
tant problems in statistics and other disciplines can be
posed as isotonic regression problems. In epidemiolo-
gy, binary longitudinal data are often collected in clini-
cal trials of chronic diseases when interest is on assess-
ing the effect of a treatment over time. Transitional
models for longitudinal binary data subject to non-
ignorable missing data can be developed but parameter
estimation must be done in conjunction with an iso-
tonic regression (see Ref. [3]). In classical time series
analysis applied to global climate prediction, complex
processes are often modelled as three additive compo-
nents: long-time trend, seasonal effect and background
noise. The long-time trend superimposed with the

seasonal effect constitute the mean part of the process.
The important issue of mean stationarity is usually the
first step for statistical inference. Researchers have
developed a testing and estimation theory for the
existence of a monotonic trend and the identification of
important seasonal effects. The associated statistical
inference and probabilistic diagnostics result from
solving a problem generically called the change-point
problem. This change-point problem initially arose in
quality control assessment. It includes, for example,
the testing for changes in weather patterns and disease
rates. Isotonic regression is necessary to test and
estimate the trend and to determine periodic compo-
nents (see Ref. [15]). For this application the isotonic
regression yields estimators for the long-time trend
with negligible influence from the seasonal effect,
a desirable property. Recently, the development of
algorithms for automatic peak and trough detection in
raw mass spectrometer data have become an active
research area. Motivated by the increased ability to
produce high-quality data quickly, these algorithms
have become crucial in cost-effective analysis of data
(see Ref. [12, 13]). One difficulty in applying automat-
ic structure revealing algorithms to raw spectroscopy
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data is the failure of data to be monotonic (usually as a
function of mass or time). This can occur for many
reasons including truncation and roundoff error,
machine calibration errors, ...etc. In this case, isotonic
regression has become an important pre-processing
step before data analysis.

Clearly the isotonic regression problem is an opti-
mization problem encountered frequently when dealing
with data generated with any uncertainty as is the
case in many application problems in science and
engineering. In their respective monographs Barlow,
Bartholomew, Bremner, and Brunk and Robertson,
Wright, and Dykstra have written comprehensive
surveys of this subject (see Refs. [1, 9]).

1.1 A Simple Example
In this section we describe a simple example of the

isotonic regression problem. Suppose that {1, 3, 2, 4, 5,
7, 6, 8} is a given set of real numbers, and that all the
weights associated with these numbers are all identical-
ly one. This set is almost isotonic; however, {3,2} and
{7,6} violate the nondecreasing requirement. One
simple solution to this difficulty can be constructed by
replacing each “block” of “violators” with the average
of the numbers in the block. This produces {1, 2.5, 2.5,
4, 5, 6.5, 6.5, 8}, which turns out to be the unique
solution of the isotonic regression problem. This is an
example of the well-known “Pool Adjacent Violators”
algorithm. One of the best-known examples of a pool
adjacent violators algorithm for solving the isotonic
regression problem is due to Grotzinger and Witzgall
(Ref. [4]). In this important paper, the authors propose
an efficient pool adjacent violator method for identify-
ing data points that violate the order constraint and, in
turn, projects the violators onto simplex representations
of the order constraints.

In this work, the formulation of the Pool Adjacent
Violators algorithm due to Grotzinger and Witzgall has
been altered slightly to run specifically on parallel
computers. This algorithm has been implemented and
tested on parallel machines (Ref. [7]).

2. A Decomposition Theorem

To attain the necessary rigor, we exploit a famous
and very elegant characterization of the solution to

the isotonic regression problem. 

denote the point (0, 0), and let Pj denote the point

as points in the graph of a function, which we extend

to the interval [0, Wn] by linear interpolation. Both the
function and its graph are called the cumulative sum
diagram (CSD) of the isotonic regression problem.

The greatest convex minorant (GCM) of a function f
is the convex function defined by

It is a well-known and beautiful result that the iso-
tonic regression problem is solved by taking x*

j to
be the left derivative of GCM [CSD] at Wj . Thus, theo-
rems about isotonic regressions can be stated and
proved as theorems about greatest convex minorants.

The ideas of the work presented here are based on
convex analysis. A comprehensive survey of convex
analysis can be found in Ref. [10]. Even though only
elementary tools need be employed to prove this
theorem, it has profound implications for parallel
computation. Suppose that we decompose the set Y into
Y1 ⊕ Y2, where Y1 = {y1, . . . , yk } and Y2 = {yk + 1, . . . , yn}.
Analogously, we can decompose a function f with
domain [0,Wn] into f1 ⊕ f2, where f1 is the restriction of
f to [0,Wk] and f2 is the restriction of f to (Wk,Wn]. Then
the following result is easily demonstrated.

Theorem 1 GCM [GCM[f1] ⊕ GCM[f2] ] = GCM[f]

Proof:
Since GCM[f1] ≤ f1 and GCM[f2] ≤ f2,

GCM[f1] ⊕ GCM[f2] ≤ f1 ⊕ f2 = f.

It follows that, if φ ≤ GCM[f1] ⊕ GCM[f2],
then φ ≤ f, and hence that

GCM[GCM[f1] ⊕ GCM[f2] ] ≤ GCM[f].

Conversely, suppose that φ ≤ f is convex and write
φ = φ1 ⊕ φ2. Then φ1 ≤ f1 and φ2 ≤ f2, so φ1 ≤ GCM[f1] and
φ2 ≤ GCM[f2]. It follows that φ ≤ GCM[f1] ⊕ GCM[f2],
and hence that

(3)

Combining inequalities (2) and (3) gives the desired
result.

2.1 Implications for Parallel Computation
If one takes the function f to be the CSD for the iso-

tonic regression problem, then Theorem 1 states the fol-
lowing: decomposing Y into Y1 ⊕ Y2, performing sepa-
rate isotonic regressions on Y1 and Y2, and then, per-
forming a final isotonic regression on the combined
result, produces the isotonic regression on Y. Because
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the separate isotonic regressions on Y1 and Y2 can be
performed simultaneously, parallel computations of
isotonic regressions will be desirable if the final iso-
tonic regression on the combined result is easy to com-
pute. In point of fact, this is the case. Suppose that Y1

satisfies y1 ≤ · · · ≤ yk and Y2 satisfies yk + 1 ≤ · · · ≤ yn. If
yk ≤ yk + 1, then Y is isotonic. If Y is not isotonic, then it
must be because some of the largest numbers in Y1

exceed some of the smallest numbers in Y2. The anti-
dote to this difficulty is to identify this central block of
offending numbers and to replace each of these num-
bers with the weighted average of the block. (This is
just the Pool Adjacent Violators algorithm again.) To
accomplish this, let

and

Then, replacing gives the
isotonic regression of Y. Thus, if one decomposes the
isotonic regression problem and performs two smaller,
separate isotonic regressions, it becomes fairly simple
to obtain the solution to the original problem.

By now it should be apparent that what is being
proposed in this paper is not a new parallel algorithm
for isotonic regression that will compete with existing
algorithms. Rather, it is the isotonic regression problem
itself that has been parallelized. (An instructive analo-
gy is the familiar exercise of sorting a list of numbers
by subdividing the list, sorting each sublist, then inter-
weaving the sorted sublists.) Because the problem itself
has been parallelized, any isotonic regression algorithm
can be used to compute the separate isotonic regres-
sions assigned to separate processors. The efficiency of
various isotonic regression algorithms has been dis-
cussed by Best and Chakravarti [2]. A very fast formu-
lation of the Pool Adjacent Violators algorithm was
provided by Grotzinger and Witzgall [4].

In light of the preceding arguments, we are virtually
assured that a parallel approach to isotonic regression
will speed up computation when n is sufficiently large.
This phenomenon is demonstrated in Sect. 4. Notice,
however, that we should not expect that the most effi-
cient strategy will necessarily be the one that uses the
largest number of processors, since the more that the
original problem is decomposed, the more difficult it
becomes to obtain the final solution from the separate
isotonic regressions. As an extreme example of this
limitation, one might decompose Y into n subsets of

singleton values, in which case nothing whatsoever has
been accomplished. Furthermore, the more that the
original problem is decomposed, the greater the com-
munication costs of parallelization. Hence, it is impos-
sible to anticipate the most efficient decomposition
strategy.

3. Application to the Analysis of Mass
Spectral Data 

Modern mass spectrometers are capable of produc-
ing large, high-quality data sets in brief periods of time
(Ref. [14]). It is not uncommon for a synthetic polymer
to produce a spectra with hundreds of peaks. This moti-
vates the design of automated data analysis algorithms
capable of rapid and repeatable processing of raw mass
spectrometer data. While many algorithms for the
analysis of raw mass spectrometer already exist, they
all require significant operator input. In some cases
smoothing parameters must be selected, in other cases
one must identify peaks from noise or vice-versa, and
many algorithms assume the functional form of data
close to peaks or troughs. Once the data has been
processed, for example peaks or troughs have been
selected and the area underneath portions of the data
have been calculated, there is still no standard or point
of comparison (Refs. [5, 6]).

Recently an algorithm with the potential to automat-
ically identify peak structure from raw mass spectrom-
eter output without the use of smoothing, parameter
specific filtering, or manual data analysis has been
developed (Refs. [12, 8]). This method requires no
knowledge of peak shape and no pre- or post-process-
ing of the data. Experience to date on matrix-assisted
laser desorption/ionisation-time of flight mass spec-
trometry (MALDI-TOFMS) shows that the power
spectrum of the noise cannot be predicted solely from
the experimental conditions; therefore, blind applica-
tion of smoothing and/or filtering algorithms may unin-
tentionally remove information from the data. The new
method does not have this failing. It does not require
equal spacing of data points. However, it does require
that data be monotonic with respect to either mass or
time. Because raw data may not be monotonic, because
of machine error, rounding error, sample preparation . . .
etc., an isotonic regression can and should be performed
on raw data. The importance of being able to perform
an isotonic regression without user-input is particularly
important in this application. The goal of many of these
algorithms is to provide output independent of any
operator parameter selection or signal to noise estima-
tion (Ref. [11]). In other words, the isotonic regression
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treatment of raw data must be extremely robust in order
to be useful for this application.

4. Numerical Experiments

One of the largest potential consumers of these
algorithms can be found in the field of combinatorial
chemistry. Indeed, when one produces tens of thousands
of mass spectra profiles, it is clear that sorting through
each one of these profiles to identify peak and trough
structure is simply not possible. As explained before,
one cannot assume that the data will behave monotoni-
cally. For the purpose of this paper, we simulate this
effect by taking the first component of ordered pair data
produced from a MALDI-TOF mass spectrometer. This
data is then corrupted in a way that introduces a simulat-
ed numerical error. This is very much like a combinator-
ial application where, for example, robotic schemes may
be used to take mass spectral data from samples numer-
ous times but automatically and rapidly.

The value yk is the kth first component of our
unequally spaced data set of size n, where n = 50,000.
The points are normalized so that yk ∈ [0, 100] for
1 ≤ k ≤ n. The resulting set Y of n increasing numbers
was perturbed in various ways to obtain the data sets
that we subjected to isotonic regression. Each of ten
strategies for perturbing the original set of numbers was
replicated R = 100 times, resulting in a total of one
thousand data sets.

Let σ = log(2)/1.95996 be fixed. In what follows,
whenever we perturb a value yk, we do so by replacing
yk with yk exp(σ z), where z is a standard normal
deviate. This multiplicative model of measurement
error was constructed so that approximately 95 % of
the perturbed values would be at least one half and no
more than twice the replaced value.

The following loops describe our perturbation strate-
gies. In each case, the intent was to perturb P values in
the form of B blocks of length L.

For R = 1 to 100 repetitions:

1. Perturb each of the n values in the original data set 
Y to obtain data set Y1000.R.

2. For P = .49n, .25n, .01n and L = 1,
(a) Randomly select B = P/L numbers from

{1, . . . , n/L} without replacement
Call these numbers s1, . . . , sB.

(b) Let π = n/P. For i = 1, . . . , B and j = 0, . . . ,
L – 1, let k = πsi + j and perturb each original 
value yk.

(c) Denote the resulting data set by Y0ppl.R,
where pp = 100P/n and l = 2 log (L)/log(P).

For example, the data set produced on the fourth
repetition of the case for which P = .49n and
L = is denoted by Y0491.4.

Thus, we generated 100 data sets (Y1000) in which
all values were perturbed, 300 data sets (Y049l) in
which 49 % of the values were perturbed, 300 data sets
(Y025l) in which 25 % of the values were perturbed,
and 300 data sets (Y001l) in which 1 % of the values
were perturbed. Furthermore, in each of the cases that
P = .49n, .25n, .01n of the values were perturbed, we
generated 100 data sets (Y0pp0) in which we perturbed
P isolated values, 100 sets (Y0pp1) in which we per-
turbed blocks of consecutive values, and 100
data sets (Y0pp2) in which we perturbed one block of
P consecutive values.

Each data set was submitted to isotonic regressions on
a personal computer cluster machine comprised of single
and multiple processors. These regressions used, respec-
tively, A = 1, 2, 4, 8, 16, 32 of the cluster computer’s
processors. For each regression, the data set was decom-
posed into A subsets of (approximately) equal size. Each
subset was simultaneously sent to a separate processor,
where its isotonic regression was computed using
Grotzinger’s and Witzgall’s [4] formulation of the Pool
Adjacent Violators algorithm. As soon as the isotonic
regressions of two consecutive subsets were computed,
the combined result was sent to one of the available
processors, which then computed the combined isotonic
regression by means of the device described in Sec. 2.1.
This process was continued until the isotonic regression
of the entire data set was obtained. The elapsed time from
job submission to completion was measured by the
Delta’s intrinsic timer. The results are summarized in
Table 1.
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Table 1. Sample means and standard deviations ( ȳ ± sy) of elapsed
times in milliseconds for five repetitions of ten isotonic regression
experiments

Data Number of Processors
Sets 1 2 4 8 16 32

P

Y1000 2278± 93 1376±22 1158±16 930± 7 1062±25 1058±15
Y0490 2406±142 1416± 5 1182± 4 938± 8 1062± 4 1068± 8
Y0491 2376±180 1436±29 1208±50 958±19 1060±14 1080±27
Y0492 2370±171 1378± 8 1152± 8 922± 4 1032± 4 1036±15
Y0250 2396± 54 1386± 9 1144±11 944±48 1040±14 1040±12
Y0251 2298±128 1410± 7 1174± 5 936± 5 1058± 4 1052± 4
Y0252 2330± 95 1406± 9 1172± 4 942± 4 1066± 9 1058± 4
Y0010 2232± 30 1378± 4 1150± 7 922± 4 1034± 5 1032± 8
Y0011 2368±156 1410±10 1188±24 940± 0 1062± 4 1062± 4
Y0012 2380±152 1418± 8 1184±22 944± 5 1068±18 1070±12



Table 1 exhibits several striking features. First, the
variations in times produced by replications are
extremely small relative to the magnitudes of the times.
In retrospect this is not surprising: each data set
contains a very large number of independent errors, so
that one should expect that most data sets constructed
in accordance with a specific perturbation strategy will
be quite similar.

Second, there is very little variation in mean timing
profiles between the perturbation strategies. This
suggests that the phenomena described below are not
unique to a particular data structure.

As anticipated, it is apparent that some degree of
parallelization decreases the time required to perform
an isotonic regression. For the data sets that we consid-
ered, the time required by A = 2 processors divided by
the time required by A = 1 processor ranged from a mini-
mum of 53.2 % to a maximum of 65.9 %, with a medi-
an of 60.3 %. The time required by A = 4 processors
divided by the time required by A = 1 processor ranged
from a minimum of 44.9 % to a maximum of 54.8 %,
with a median of 50.1 %. The time required by A = 8
processors divided by the time required by A = 1
processor ranged from a minimum of 35.7 % to a max-
imum of 43.5 %, with a median of 40.5 %. Thus, there
is compelling evidence that, for n = 50, 000 and these
types of data sets, using A = 8 processors is more effi-
cient than using A = 4, 2, 1.

For A = 16, 32, the communication costs of the
parallelization strategy begin to dominate and the times
are actually slower than for A = 8 processors. This
phenomenon was also anticipated. With larger data
sets, we know that we can take advantage of additional
processors, but the tradeoff between n and the optimal A
must be empirically determined for the data structures
and parallel computing system of interest.

Finally we note that, although the proportional
improvements in efficiency produced by parallel pro-
cessing are impressive, the absolute times for serial
processing are small. At present, it is difficult to forsee
applications involving isotonic regressions on data sets
so large that the absolute savings in time will warrant
parallel computation. Perhaps that day will come; for
now, our primary interest in parallelizing isotonic
regression is for the pedagogical value of so doing. In
our view, isotonic regression is a remarkably simple
and elegant example of a problem for which mathe-
matical theory virtually guarantees that parallelization
will be beneficial. 
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